
  
 

 

A Lowest Cost RDD Caching Strategy for Spark 

Yuyang Wang1, 2, a, Tianlei Zhou1, 2, b 
1School of computer science and technology, Chongqing University of Posts and Telecommunications, 

Chongqing, 400065, China 
2Chongqing Engineering Research Center of Mobile Internet Data Application, Chongqing, 400065, China 

a529504153@qq.com, bztl_wangyi@163.com 

Keywords: RDD, Spark memory management, Memory computing, Cache strategy 

Abstract: Spark abstracts intermediate results into RDD in memory and manages them with LRU 
strategy to improve performance. However, RDD will be reloaded in many cases because RDD for 
different computing tasks have different lifecycle, which incurs additional system overhead. In this 
paper we proposed a lowest cost replacement strategy as Spark's cache replacement strategy to 
eliminate this problem. This strategy preemptively evicts RDD with small weight values from 
memory based on the weight model. And then, in this process, we select the solution with the 
lowest cost to replace the RDD in memory to improve the efficiency of Spark. Finally, experiment 
results show that strategy we proposed can speed up the efficiency of the whole cluster. 

1. Introduction 
Spark is an improvement of MapReduce [1] programming model based on Hadoop [2, 3] 

platform. For a large number of network transfer data and disk I/O issues, Spark abstracts 
intermediate results as resilient distributed dataset (RDD) and computes them in memory, witch 
changes data exchange from disk to memory and speed up the data processing performance. And 
Spark is widely applied in the platform of big data processing because of its features of memory 
based and good versatility. Many companies use Spark cluster to process data such as Yahoo 
Audience Expansion, Baidu MapReduce and Tencent Social Ads [4]. Nevertheless, Spark has 
drawbacks. Part of the RDD cannot be cached because memory is limited and it needs to be reloaded 
[5] when it is used again. And Spark use LRU to manage RDD in memory without considering RDD 
useage which may increase the cost of reloading RDD. The cost of reloading RDD will be reduced 
and Spark efficiency will be improved if we make predictions [6] about RDD and keep important 
RDD in memory for a long time. 

2. Related work 
All of Spark's operations are based on RDD and each of them generates a new RDD. As shown in 

Figure 1, several new RDD will be generated after transformations and each of them contains several 
partitions. The transformed dependencies between these different RDD partitions form the DAG 
diagram. Then these dependencies decompose the DAG diagram into multiple stages. The 
transformation of the RDD partition in the stage is assigned to a computing task. After that, the 
Spark scheduler sends those tasks to different nodes in the cluster for execution. Finally, each node 
writes the final result to the disk. Spark is a memory-based computing framework, and its execution 
efficiency is directly affected by the cache-replacement strategy. Current Spark research focuses on 
memory management and caching strategies. 
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Figure 1. Spark task RDD transformation diagram 

In terms of memory management. Kim [7] proposed Sparkle which replaces the current 
TCP/IP-based shuffle with shared memory and an off-heap memory which can update effectively. 
Lu [8] proposed a memory management scheme that allocates and frees memory according to the 
life cycle of objects rather than relying on GC (Garbage Collection) to improve the efficiency of GC. 

In terms of caching strategy. Geng [9] proposed LCS (Least Cost Strategy) strategy which gets 
dependencies information between cache data via analyzing application, and calculates the recovery 
cost during running. By predicting the number of times the cached data will be reused and using it to 
weight the data, LCS will reduce the recovery cost by evicting data with high recovery cost. Chen 
[10] proposed a strategy of automatic cache RDD and the weight model of RDD, and according to 
this model to replace cache data. Shen [11] verified the factors influencing the weight of RDD and 
improved the weight model of RDD according to the experiment. They also optimized the task 
structure and the sequence of RDD operators in Spark task to improve Spark computing efficiency. 
Bian [12, 13] proposed the concept of memory resource entropy and introduced it into the RDD 
weight model to improve the theoretical model of RDD weight. Meng [14] proposed a strategy based 
on the distributed weight of RDD that evict incomplete RDD partitions firstly when memory 
resources are insufficient. 

The above research can improve computing efficiency when Spark is short of memory resources. 
However, the weight-based cache replacement strategy has drawbacks. For example, multiple RDD 
may be replaced in memory when the RDD that needs to be cached is large, and the recovery cost of 
these RDD may not be minimal. The weight-based cache replacement strategy ignores the cost of 
RDD recovery. Therefore we adds a recovery cost model based on RDD to the weight-based cache 
replacement strategy, that select the scheme with the lowest recovery cost according to this model 
during weight-based caching replacement to reduce the cost of reload RDD. 

3. Lowest cost cache replacement strategy 
Spark manages RDD in memory by default with LRU strategy. Some of these RDD may be 

reloaded repeatedly. It is high-efficiency for spark that we predict RDD and cache RDD which 
reload repeatedly or reload costly. This paper proposes a lowest cost RDD cache strategy. We first 
establish a weight model for RDD and replace RDD in memory based on this model, then we 
establish recovery cost model and select the lowest cost scheme based on this model during first step. 

3.1 RDD weight model 
Factors that influence the weight of RDD include the frequency, size, recovery cost, and lifecycle 

of RDD. We define all RDD in a Spark application to be {RDD1, RDD2... , RDDi,... RDDn}, and 
RDDij represents the jth partition of the ith RDD in the set. Fij represents the usage frequency of 
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RDDij, Sij represents the memory occupied by RDDij, LCij represents the life cycle of RDDij, Costij 
represents the recovery cost of RDDij, wij represents the weight value of RDDij, k represents the 
adjustment coefficient. Then, the weight of RDDij is calculated as Equation (1): 
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In Equation (1), the recovery cost of RDD partition is difficult to measure. The most direct way is 
to calculate the time of generating the RDD partition. Define the start time and finish time of 
generating the RDD partition task as STij and FTij, respectively. Then, the recovery cost of RDDij 
can be expressed as Equation (2): 

ijijij STFTCost −=                                      (2) 

3.2 RDD weight replacement algorithm 
According to the weight model in the previous section, the weight value of each RDD can be 

calculated. Based on the weight value, the weight replacement algorithm first replaces RDD with the 
minimum weight value. Algorithm 1 shows the steps. 

Algorithm 1 RDD Weight Replacement  
Input: In-memory sets of RDD weight values RDDTreeMap, Free memory size 
Slast,The RDD weight to be cached wn, The RDD size to be cached Sn, RDD recovery 
costs to be cached SCostn 
1：w m = RDDTreeMap.get(RDDTreeMap.firstKey());  //Get the minimum RDD 
weight in memory 
2：if  S last > Sn  //There is enough memory left 
3：   cache(RDDn); 
4：end if  
5：if  w n < wm  //The RDDn to be cached is smaller than the minimum weight value in 
the cache 
6：    return;  
7：else if  w n == wm  
9：     if  SCost n > SCostm  && Slast+Sm > Sn 
10：       replaceRDD(RDDm,RDDn);  // Replace RDDm and RDDn in  memory 
11：       RDDTreeMap.remove(RDDm);  // Update the sets of records RDD  
12：       RDDTreeMap.put(RDDn);  
13：    else  
14：      return;  
15：    end if  
16：else   
17：   if  Slast+Sm >Sn  //RDDn is larger than RDDm in memory, so it is directly 
replaced 
18：      replaceRDD(RDDm,RDDn); 
19：      RDDTreeMap.remove(RDDm); 
20：      RDDTreeMap.put(RDDn); 
21：   else   //Call algorithm 2 to select the optimal alternative 
23： end if   
24：end if  

3.3 RDD recovery cost model 
Equation (2) is the recovery cost of a single RDD partition. And an RDD partition is used 

multiple times in Spark applications. Therefore the recovery cost of an RDD partition is the sum of 
the recovery costs for the number of times that partition is used. We define Fij as the usage frequency 
of RDDij, and SCostij represents the recovery cost of RDDij in the whole process. Finally, the 
recovery cost of RDD partition is shown in equation 3. 
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Similarly, the recovery cost of an RDD set is the sum of all the RDD recovery costs in the set. We 
define set R as {RDDm, RDDm+1,..., RDDn}, and the recovery cost of set R is shown in equation 4. 
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This paper introduces the concept of space cost entropy (Q) when we cache RDD to replace 
multiple small weights RDD. And we choose the RDD set that meets the condition based on the Q 
value. Q is used to measure the recovery cost per unit space of an RDD partition in memory. For 
RDD partition RDDij, its space cost entropy is the ratio between the recovery cost of the RDD and 
the occupied memory space, denoted as Qij, as shown in Equation 5. 

ij

ij
ij
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CostQ =                                      (5) 

The smaller the Q value is, the less expensive it is to restore the same size of RDD. If the weight 
replacement algorithm removes several small weights RDD from memory, we cannot guarantee that 
the recovery cost of these RDD is minimal. And memory may leave a lot of space. The free memory 
size and the sum of recovery cost are balanced when we selected RDD with the minimum Q value as 
the greedy strategy. 

3.4 Lowest recovery cost replacement algorithm 
The lowest recovery cost replacement algorithm is triggered in the process of weight replacement 

when the RDD to be cached is large and multiple small weights RDD may need to be replaced. 
Based on the recovery cost model in section 2.3, the scheme with the lowest recovery cost is selected 
for cache replacement. There are three possible schemes: 1. The total recovery cost of multiple small 
weights RDD is greater than the RDD to be cached. At this time, this RDD is ignored and not cached. 
We define RDDi as the RDD to be cached, where the recovery cost is SCosti of the recovery cost of 
RDDi. 2. There is an RDD in memory, whose weight is less than the RDD to be cached, and the sum 
of its size and free memory size can replace the RDD to be cached. At this time, the RDD to be 
cached only needs to replace one RDD. RDDj is defined as RDD that meets the conditions, and the 
recovery cost is SCostj of RDDj. 3. When the cached RDD replaces multiple small weight RDD, the 
total recovery cost of these RDD is not necessarily optimal. At this point, we use the minimum value 
of Q in section 2.3 as a greedy strategy to select a qualified RDD set in memory. If the set is 
represented by R, then the recovery cost is SCostR. Algorithm 2 shows the steps. 

Algorithm2 Lowest Recovery Cost Replacement Algorithm 
Input:In-memory sets of RDD weight values RDDTreeMap, Sets of RDD size 
RDDSizeMap, Sets of RDD recovery cost RDDCostMap, Sets of RDD frequency 
RDDFreqMap, Free memory size Slast, The RDD weight to be cached wn, The RDD 
size to be cached Sn 
Initialization:SCost1=RDDCostMap.get(RDDn) * RDDFreqMap.get(RDDn);  
//Costs for scheme 1 
           SCost2=MAX_VALUE;  //Costs for scheme 2 
           SCost3=Call Algorithm2 ;  //Costs for scheme 3 
1:for each item in RDDTreeMap do  
2：   if w i > wn  
3:      break; 
4:   end if 
5:   Si = RDDSizeMap.get(RDDi);  //Size of RDDi 
6:   if Si+Slast >= Sn  //Satisfy the conditions of scheme 2 
7:      SCost2 = RDDCostMap.get(RDDi) * RDDFreqMap.get(RDDi); 
8:   end if 
9:   Costi = RDDCostMap.get(RDDi); 
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10:  QTreeMap.put(RDDi,Costi / Si);  //Evaluate and save Q 
11: end for 
12:  for each item in QTreeMap do  
13:    listR.add(RDDi);  //Select RDD with the minimum Q value as greedy 
strategy 
14:    SCost3 += RDDCostMap.get(RDDi) * RDDFreqMap.get(RDDi);  
//recovery cost of scheme 3 
15:    SR += RDDSizeMap.get(RDDi);  //size of listR 
16:    if SR + Slast >= Sn  // That satisfies the substitution condition to get the final set 
17:        break; 
18:    end if 
19:end for 
20:switch(Min(SCost1,SCost2,SCost3)) 
21:    case SCost1:  //Use scheme 1 
22:      break; 
23:    case SCost2:  //Use scheme 2 
24:      //Replace the RDDn with RDDi 
25:      break; 
26:    case SCost3:  //Use scheme 3 
27:      //Replace the RDDn with RDD in listR 
28:      break; 
29:end switch 

4. Experiments 
This section verifies the effectiveness of weight replacement algorithm and lowest recovery cost 

replacement algorithm through experiments. In the experiment environment, 1 server was used as the 
master node and 6 servers were used as worker nodes. The data set was the PageRank test data set 
provided by SNAP (Stanford Network Analysis Project). And the data sets selected in this article are 
shown in the following table. 

Table.1. SNAP partial data sets 

Name Nodes Edges Description 
p2p-Gnutella06 8717 31525 Gnutella peer to peer network from August 5 2002 
p2p-Gnutella24 26518 65369 Gnutella peer to peer network from August 24 2002 

amazon0302 262111 1234877 Amazon product co-purchasing network from March 2 
2003 

web-Stanford 281903 2312497 Web graph of Stanford.edu 
amazon0505 410236 3356824 Amazon product co-purchasing network from May 5 2003 
amazon0601 403394 3387388 Amazon product co-purchasing network from June 1 2003 

wiki-Talk 2394385 5021410 Wikipedia talk (communication) network 
web-Google 875713 5105039 Web graph from Google 

web-BerkStan 685230 7600595 Web graph of Berkeley and Stanford 
soc-Pokec 1632803 30622564 Pokec online social network 
Comparison under different datasets: in this section, the data set in table 1 is divided into the 

larger part and the smaller part. We experimented with the PageRank algorithm with 40 iterations. 
Figure 2 (a) and (b) compare the experiment results of native Spark's caching strategy (Default), 
weight replacement algorithm (WR) and lowest cost replacement strategy (LCR). 
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(a)                                   (b) 

Figure 2. Task execution time comparisons under different data sets 
By comparing the experiment results, it can be seen that WR and LCR took shorter task execution 

time than Default strategy, and LCR took the shortest time. This is because RDD is often replaced 
when the cluster is out of memory, and WR strategy keeps important RDD in memory to reduce the 
time of reloading expensive RDD. LCR strategy selects the scheme with the lowest cost in the WR 
strategy to replace the RDD in memory to minimize the time of reload RDD. 

Comparison under different iteration times: Figures 3 and 4 select amazon0601 and web-berkstan 
from the dataset respectively, and compare the experiment results of native Spark's caching policy 
(Default), weight replacement (WR) algorithm and lowest cost replacement strategy (LCR) with 
different iteration times. 

 
Figure 3. Task execution time in amazon0601 

 
Figure 4. Task execution time in web_BerkStan 
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By comparing the experiment results, it can be seen that both WR and LCR performed better than 
Default and LCR performed best. Moreover LCR strategy performed better and better when the 
number of iterations was greater than 20. That is because LCR reduces the recovery cost caused by 
RDD replacement and improves Spark's running efficiency. 

5. Conclusion 
This article replaces Spark's native caching policy with a weight replacement policy. Firstly, we 

calculate the weight value for each RDD based on the weight model, and prioritize the elimination of 
RDD with small weight value. Then, in this process, we select the solution with the lowest recovery 
cost to replace the RDD in memory. Finally, experiment results show that the weight-based 
lowest-cost cache replacement strategy improves Spark's efficiency. 

References 
[1] Wang Y, Lu W, Lou R, et al. Improving MapReduce Performance with Partial Speculative 
Execution [J]. Journal of Grid Computing, 2015, 13 (4): 587-604. 
[2] White T. Hadoop: the Definitive Guide [M]. Southeast University Press, 2011. 
[3] Hang L, Hang L, Hang L, et al. Neural generative question answering [C] // International Joint 
Conference on Artificial Intelligence. 2016. 
[4] Hu-Sheng L, Shan-Shan H, Jun-Gang X U, et al. Survey on Performance Optimization 
Technologies for Spark [J]. Computer Science, 2018. 
[5] Robert S, Patrick M, Phil T. Transparent fault tolerance for scalable functional computation [J]. 
Journal of Functional Programming, 2016:-. 
[6] Wang K, Khan M M H. Performance Prediction for Apache Spark Platform [C] // IEEE 
International Symposium on IEEE International Conference on High Performance Computing & 
Communications. IEEE Computer Society, 2015. 
[7] Kim M, Li J, Volos H, et al. Sparkle: Optimizing Spark for Large Memory Machines and 
Analytics [J]. 2017. 
[8] Lu L, Xuanhua S, Yongluan Z, et al. Lifetime-based memory management for distributed data 
processing systems [J]. Proceedings of the VLDB Endowment, 2016, 9 (12): 936-947. 
[9] Geng Y, Shi X, Pei C, et al. LCS: An Efficient Data Eviction Strategy for Spark [J]. 
International Journal of Parallel Programming, 2016. 
[10] Chen K, Wang B, Feng L. Data object cache in Spark computing engine [J]. ZTE Technology 
Journal, 2016, 22 (2): 23-27. 
[11] Shen B. Research on Spark caching strategy based on task structure optimization [D]. 
[12] Bian C. Research on significant technologies of performance optimization on in-memory   
computing frameworkD]. 2017. 
[13] Bian C, Yu J, Ying C T, et al. Self-Adaptive Strategy for Cache Management in Spark [J]. Tien 
Tzu Hsueh Pao/Acta Electronica Sinica, 2017, 45 (2): 278-284. 
[14] Hong-Tao M, Song-Ping Y U, Fang L, et al. Research on Memory Management and Cache 
Replacement Policies in Spark [J]. Computer Science, 2017. 

36


	1. Introduction
	2. Related work
	3. Lowest cost cache replacement strategy
	4. Experiments
	5. Conclusion
	References



